

Towards a Harmonized LST Product - the problem of angular anisotropy of LST

Sofia L. Ermida, A. Pires, I. F. Trigo, C. DaCamara

LSA SAF LST product

Land Surface Temperature

- SEVIRI instrument on board Meteosat
- Thermal infra-red
- Split-windows algorithm
- Clear sky
- ▶ 15 min temporal resolution
- ~3 km spatial resolution (nadir)

landsaf.ipma.pt

LST directionallity

8 h 57% shadow 10% sunlit

45º view

8 h 57% shadow 10% sunlit

nadir view

LST directionality

MSG/SEVIRI

AQUA/MODIS

VZA (degrees)

Method

Kernel model of directional effects

Geostationary orbit

(fixed view)

Polar orbit (variable view)

Meteosat (geostationary) vs Metop (polar) orbits Source: Two orbits, one Earth by EUMETSAT

Remote Sensing data

SEVIRI MSG

MODIS TERRA/AQUA

- Polar orbit
- Temporal resolution: ~12h
- Spatial resolution: 1 km

AATSR ENVISAT

- Polar orbit
- Temporal resolution: 1-2 days
- Spatial resolution: 1 km

Meteosat (geostationary) vs Metop (polar) orbits Source: *Two orbits, one Earth* by EUMETSAT

Study area

- MODIS + SEVIRI
 - Jan 2013 to Oct 2014
 - Jan to Dec 2011
- AATSR + SEVIRI
 - Jan to Dec 2011

The kernel model

Model description

→ Vinnikoveetal(20212)

$$\frac{T(\theta_{v},\theta_{i},\Delta\phi)}{\text{EmisSivity kernel:}} = 1 + A\Phi(\theta_{v}) + D\Psi(\theta_{v},\theta_{i},\Delta\phi)$$

Emissivity kernel: Solar kernel: $\Phi(\theta_v) = 1 - \cos(\theta_v)$

Solar kernel:
$$\Psi(\theta_{v} = 0) = 0$$
 Shadowing
$$\Psi(\theta_{v}, \theta_{i}, \Delta \phi) = \sin(\theta_{v}) \frac{\cos(\theta_{i}) \sin(\theta_{i}) \cos(\Delta \phi)}{\cos(\Delta \phi) \cos(\theta_{i} - \theta_{v})}$$
 Incoming radiation Hot spot effect

Model description

Results

Model parameters

$$\frac{T(\theta_{v}, \theta_{i}, \Delta \phi)}{T_{0}} = 1 + \mathbf{A}\Phi(\theta_{v}) + \mathbf{D}\Psi(\theta_{v}, \theta_{i}, \Delta \phi)$$

Model calibrated with MODIS+SEVIRI 2013+2014

Model parameters

MODIS vs SEVIRI

SEVIRI LST and MODIS LST for 2013+2014 data

Root Mean Square Differences (RMSD) between Root Mean Square Differences (RMSD) between SEVIRI LST and MODIS LST for 2013+2014 data

after correction with kernel model

MODIS vs SEVIRI

Model calibrated with MODIS+SEVIRI 2013+2014

MODIS vs SEVIRI - cross validation

RMSD between SEVIRI LST and MODIS LST for 2013+2014 data

RMSD between SEVIRI LST and MODIS LST for the cross validation after correction with kernel model

Model calibrated with

MODIS vs SEVIRI - cross validation

Model calibrated with 2013

MODIS vs SEVIRI - independent data Model

Root Mean Square Differences (RMSD) between Root Mean Square Differences (RMSD) between SEVIRI LST and MODIS LST for **2011** data

SEVIRI LST and MODIS LST for 2011 data after correction with kernel model

MODIS vs SEVIRI – independent data

Model calibrated with MODIS 2013+2014

AATSR vs SEVIRI

RMSE between SEVIRI LST and **AATSR** LST for **2011** data

RMSE between SEVIRI LST and **AATSR** LST for **2011** data **after correction with kernel model**

Model

calibrated

20° E

RMSD (K

Applications

SEVIRI full disk

Applying to LST...

LST (ºC)

LST - T₀ (^oC)

Concluding remarks

- The Kernel model is an effective tool in correcting angular effects in satellite retrieved LST
- The model presents good performance and robustness
- The model's parameters seem to have a relation with vegetation and ground relief
- The angular information provided by the kernel model is planned to be incorporated in the LSA-SAF LST product

Thank you

